

H->γγ: Update on γ Efficiency & γ/Jet Rejection/Separation

K.Loureiro, B. Mellado, S.Paganis, A.Stradling, Sau Lan Wu

University of Wisconsin - Madison

Higgs Working Group, January 22, 2004

OUTLINE

- Motivation and Goals
- Neural Nets
 - Monte Carlo Data Sets Used
 - Neural Net Training Variables
 - Neural Net Results
- Rejection of Gluon Jets
 - Extended Definitions
- Conclusions & Future Plans

MOTIVATION & GOALS

- Di-jet Rejection with Neural Nets
- Work in progress on rejection of the following reducible backgrounds (we are using separated samples for better identification)

$$\rightarrow$$
 qqbar $\rightarrow \gamma + g$

$$\rightarrow$$
 gq $\rightarrow \gamma + q$

• Use rejection parameters in full $H \rightarrow \gamma \gamma$ analysis.

NEURAL NET Training Details (SNNS)

<u>Connectivity</u>: Feed Forward Network/Convergent

<u>Learning Algorithm</u>: Standard Back Propagation

<u>Data Samples Used</u>: $M_{H} = 130 \text{ GeV MC@NLO files}$

Di-jets $17 < E_{_{\rm T}} < 23 \text{ GeV}$

Net Structure:

8 input nodes

10 hidden nodes

1 output node

MC DATA SETS USED

Higgs Events	Number of Events
Higgs->Gamma Gamma M _h = 120 GeV	
002329.lumi02.recon.009.*.hlt.pyt_h120	10000
Higgs (->Gamma Gamma) + Jet M _h = 130 GeV	
higgs.002638.nlo_h130.dc1.simul	66455
Di-Jet Events	
17 GeV	
002000.lumi02.recon.010hlt.pythia_jet17	251423
25 GeV (to be done)	
dc1.002001.lumi02.recon.009hlt.pythia_jet_25.root	116651
55 GeV (to be done)	
dc1.002002.lumi02.recon.009hlt.pythia_jet_55.eg9.603.root	237604
Photon-Gluon Jet Events	
20 GeV	
higgs.002655.bg_gamma_g.dc1.recon.0010*.root	456552

Luminosity:

2 x 10³³ cm⁻²s⁻¹ (approximately 4.6 minimum bias events added per bunch crossing.)

TRAINING VARIABLES

Preselection Cuts	Photons Jets		$E_{T1} > 40 \text{ GeV & } E_{T2} > 25 \text{ GeV}$ $E_{T} > 17 \text{ GeV & LVL1}$
Variables	Hadronic	Н	E __ (Had)/E __ (EM)
	Second Sampling	2S_a	$E_{2}(3x7)/E_{2}(7x7)$
		2S_b	Corrected shower width using 3x5 cells in η .
	First Sampling 15 15	1S_a	Energy of strip with maximal energy deposit scaled by fraction of Total E _T (EM)
		1S_b	Energy of strip where second maximum is found minus the energy of the valley between the two maxima.
		1S_c	Fraction of energy outside the shower core in η .
		1S_d	Corrected shower width using three strips.
		1S_e	Total width in first sampling using 20 strips.

NEURAL NET Results

Cut value of 0.9 (NN)

Photon Efficiency: 85 %

Jet Rejection : 1712

Cut Analysis (Lots of cuts)

Photon Efficiency: 85 %

Jet Rejection : 1254

NN Improvement = 27 %

Gluon Jets Rejection Studies

- Need a consistent mechanism to identify gluons coming from the matrix element.
- ◆ Need a consistent definition of rejection.
- ◆ So far, we have looked at three different methods for tagging the gluon jets (work in progress).

DEFINITIONS

Photon Efficiency := $N_{Accepted Photons} / N_{Total}$ Jet Rejection* := $N_{AtlFAST Jets} / N_{Accepted Jets}$ Jet Rejection** := $N_{AtlFASTB Jets} / N_{Accepted Jets}$

Jet Rejection*** := N_{MatrixElementGluonJets} / N_{Accepted Jets}

N_{ATLFASTJets} is normalized to the number of events prior to the particle level filter.

- * Jet rejection with respect to jets observed in AtlFast (a.k.a. uncorrected).
- ** Jet rejection with respect to jets observed in AtlFastB.
- *** Jet rejection with respect to identified partons (Orsay Group).

Control Plots

Gluon P_T from Generated Info

Photon P_T from Generated Info

E_T from EM clusters (change scale)

Control Plots (2)

Higgs Working Group Meeting, 22/01/2004

Karina F. Loureiro

RESULTS & FUTURE PLANS

- →~27% improvement on jet rejection using neural networks over cut analysis.
- To study jet rejection in other P_T regions for di-jets.
- To complete jet rejection studies for reducible backgrounds pertaining to the $H \rightarrow \gamma \gamma$ analysis.
- To apply existing corrections to photon identification and isolation studies (INFN Milano).